Acids and Bases

Naming Binary Acids

- Start with the prefix "hydro"
- Use the root of the anion
- End with the suffix "ic"
- Use the word "acid"
- Example
- HCl
- Hydrochloric acid

Naming Oxyacids

- General formula: $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$
- X is an element other than hydrogen or oxygen
- Replace the anion's suffix "ate" with "ic"
- Examples:
$-\mathrm{HNO}_{3}$
- Nitric acid
$-\mathrm{H}_{2} \mathrm{SO}_{4}$
- Sulfuric acid

Strong Acids

- Acids that completely dissociate in water
- There are only six strong acids:
- Hydrochloric acid (HCl)
- Hydrobromic acid (HBr)
- Hydroiodic acid (HI)
- Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
- Nitric acid $\left(\mathrm{HNO}_{3}\right)$
- Perchloric acid $\left(\mathrm{HClO}_{4}\right)$

Naming Bases

- The name of the metal is combined with the anion, hydroxide $\left(\mathrm{OH}^{-}\right)$
- Example
$-\mathrm{NaOH}$
- Sodium hydroxide
$-\mathrm{Mg}(\mathrm{OH})_{2}$
- Magnesium hydroxide

Strong Base

- Bases that completely dissociate in water
- Strong bases include any ionic compound that contains the hydroxide ion
- Group 1 and 2 elements for strong bases when combined with OH^{-}
- When a strong acid and a strong base combine together they react completely.
- All of the hydrogen ions (from the acid) and all of the hydroxide ions (from the base) will react to form water.
- Write and equation for the neutralization reaction between $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaOH
- Predict the products and ensure that the equation is balanced
$-\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
- Use the solubility rules to confirm whether each product will be aqueous, solid, or liquid.
$-\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\text {aq })} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
- Write a total ionic equation
$-2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}_{(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(1)}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$
- Write the net ionic equation
$-\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Neutralization Reactions

- Write a balanced chemical equation for the reaction.
- Use the concentration and volume of the known acid or base to calculate the moles of the substance.
- Use the coefficients from the balanced equation to determine the moles of the unknown acid or base
- Calculate the required volume or concentration of the acid or base.

Arrhenius

- Acids are any substances that dissolve to produce hydrogen ions $\left(\mathrm{H}^{+}\right)$when dissolve in water.
$-\mathrm{HCl}_{(\text {aq })} \rightarrow \mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{Cl}_{(\mathrm{aq})}$
- Bases are any substances that dissolve to produce hydroxide ions $\left(\mathrm{OH}^{-}\right)$when dissolved in water.
$-\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}$
- However, this does not explain CO_{2} (no hydrogen) and NH_{3} (no hydroxide)
- Arrhenius explained this by saying that they reacted with the water first:
$-\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}} \rightarrow 2 \mathrm{H}^{+}{ }_{(\mathrm{aq)}}+\mathrm{HCO}_{3_{(a q)}^{-}}$
$-\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
- Brønsted and Lowry independently proposed a new theory that relates acid-base theory to proton transfer.

Brønsted-Lowry

- Acids are substances that increase the hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ion concentration. Thus acids are proton donors.
$-\mathrm{HNO}_{3(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}+\mathrm{NO}_{3}{ }^{-}{ }_{\text {(aq) }}$
- Bases are substances that increase the hydroxide ($\mathrm{OH}-$) ion concentration. Thus bases are proton acceptors.
$-\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
- When any one of $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, CO_{2}, or $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to water, the hydronium ion concentration is increased.
- Hence, they are acids.
- When any one of $\mathrm{NaOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{CaO}$, MgO , or NH_{3} is added to water, the hydroxide ion concentration is increased.
- Hence, they are considered bases.

Conjugate Acids and Bases

- In any acid base reaction, a conjugate acid and base pair are established.
- Conjugate acid-base pairs are compounds that differ by the presence of one proton, or H^{+}.
- All acids have a conjugate base, which is formed when their proton has been donated
- Likewise, all bases have a conjugate acid, formed after they have accepted a proton.

Example

- Substances, such as water, which can act as both acids and bases are said to be amphoteric.
- Other examples of amphoteric substances are amino acids and proteins
- Both have an amino group, NH_{2} (base) and a carboxyl group, COOH (acid)

Lewis

- Bases are substances that can donate a pair of electrons.
- Acids are substances that can accept a pair of electrons.
- Lewis argued that the $\mathrm{H}+$ ion accepts a pair of electrons from the OH - ion to form a new covalent bond.
- Any substance that can act as an electron pair acceptor is a Lewis acid.

- The pair of electrons that went into the new covalent bond were donated by the OH^{-}.
- Any substance that can act as an electron pair donor is a Lewis base.
- The Lewis acid-base theory expands the number of substances that can be considered acids.
- Any compound that has one or more valence shell orbitals can now be considered an acid.
- The theory explains why BF_{3} reacts instantly with NH_{3}
- The non-bonding electrons on the nitrogen in ammonia are donated into an empty orbital on the boron atom to form a covalent bond

Ion Product Constant of Water

- Pure water undergoes a small degree of ionization
- Only two molecules out of one billion will ionize

$$
2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq)}}^{-}
$$

Dissociation Constant $\left(\mathrm{K}_{\mathrm{w}}\right)$

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- In pure water, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$at $25^{\circ} \mathrm{C}$ are experimentally measured as $1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
& K_{w}=\left(1 \times 10^{-7}\right)\left(1 \times 10^{-7}\right) \\
& K_{w}=1 \times 10^{-14}
\end{aligned}
$$

EVERY water solution is neutral, acidic, or basic

- A neutral solution occurs when the hydronium ion concentration is equal to the hydroxide ion concentration
- An acidic solution occurs when the hydronium ion concentration is greater than the hydroxide ion concentration
- A basic solution occurs when the hydronium ion concentration is less than the hydroxide ion concentration

pH

- Most concentrations of hydronium ions are very small (around $4 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$), so Soren P. Sorenson proposed the potency of hydrogen, or the pH scale

Calculating pH

- pH is calculated as follows:

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- Similarly, we can calculate a potency of hydroxide (pOH):

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

- Together: $\mathrm{pH}+\mathrm{pOH}=14$

Indicators

- Indicators are weak organic acids that change color when the hydronium or hydroxide ion concentration is changed
- Indicators change color over a given pH range
- Le Châtelier's Principle can be used to explain the color change

- The presence of an acid increases H^{+}, causing a shift toward color 1
- The presence of a base decreases H^{+}, causing a shift toward color 2
- Change ranges are often about 2 pH units - quite a few are less
- The human eye responds more readily to some shades of color than others
- Some substances are more intensely colored than others are, even at the same concentration

Strengths of Acids and Bases

- Strong Acid
- Completely dissociates into ions
- Strong Base
- Completely dissociates into ions

Weak Acids

- Dissociate only slightly into ions

$$
\begin{gathered}
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-} \\
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

- K_{a} is called the acid dissociation constant
- Example, HCN
$-\mathrm{HCN}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+}+\mathrm{CN}^{-}{ }_{(\mathrm{aq})} \mathrm{K}_{\mathrm{a}}=6.2 \times 10^{-10}$

Weak Bases

- Dissociate only slightly into ions

$$
\begin{gathered}
\mathrm{BH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \leftrightarrow \mathrm{BH}_{2}{ }^{+}\left(\mathrm{aq)}+\mathrm{OH}_{(\mathrm{aq})}^{-}\right. \\
K_{b}=\frac{\left[\mathrm{BH}_{2}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{BH}]}
\end{gathered}
$$

- K_{b} is called the base dissociation constant
- Example, NH_{3}
$-\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{NH}_{4}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

Other Examples of Weak Bases

- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ (aniline)
- $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (methylamine)
- $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (pyridine)

Is the solution acidic, basic, or neutral?

- A salt solution is not necessarily neutral
- When an acid combines with a base, a salt and water are produced
- A strong acid and a strong base produce a neutral solution
- A strong base plus a weak acid produce a slightly basic salt
- A strong acid plus a weak base produce a slightly acidid salt
- A salt can react with water (called salt hydrolysis)
- The anions of the dissociated salt may accept hydrogen ions from the water producing a basic solution
- The cations of the dissociated salt may donate hydrogen ions from the water producing an acidic solution

